Modeling Adversarial Behavior Against Mobility Data Privacy
نویسندگان
چکیده
Privacy risk assessment is a crucial issue in any privacy-aware analysis process. Traditional frameworks for privacy systematically generate the assumed knowledge potential adversary, evaluating without realistically modelling collection of background used by adversary when performing attack. In this work, we propose Simulated Annealing (SPA), new adversarial behavior model mobility data. We an as trajectory and introduce optimization approach to find most effective terms produced individuals represented data set. use simulated annealing optimize movement simulate possible attack on finally test effectiveness our real human data, showing that it can gathering process more realistic way.
منابع مشابه
Mobility Data & Privacy
Mobility data represent a very useful source of information and thanks to mobile telecommunications and ubiquitous computing the location of mobile users can be continuously sensed and recorded. The sharing of mobility data raises serious privacy concerns. Mobility data reveal the mobility behavior of the people: where they are going, where they live, where they work, their religion preferences...
متن کاملPrivacy-Preserving Adversarial Networks
We propose a data-driven framework for optimizing privacy-preserving data release mechanisms toward the information-theoretically optimal tradeoff between minimizing distortion of useful data and concealing sensitive information. Our approach employs adversarially-trained neural networks to implement randomized mechanisms and to perform a variational approximation of mutual information privacy....
متن کاملmodeling loss data by phase-type distribution
بیمه گران همیشه بابت خسارات بیمه نامه های تحت پوشش خود نگران بوده و روش هایی را جستجو می کنند که بتوانند داده های خسارات گذشته را با هدف اتخاذ یک تصمیم بهینه مدل بندی نمایند. در این پژوهش توزیع های فیزتایپ در مدل بندی داده های خسارات معرفی شده که شامل استنباط آماری مربوطه و استفاده از الگوریتم em در برآورد پارامترهای توزیع است. در پایان امکان استفاده از این توزیع در مدل بندی داده های گروه بندی ...
Privacy Skyline: Privacy with Multidimensional Adversarial Knowledge
Privacy is an important issue in data publishing. Many organizations distribute non-aggregate personal data for research, and they must take steps to ensure that an adversary cannot predict sensitive information pertaining to individuals with high confidence. This problem is further complicated by the fact that, in addition to the published data, the adversary may also have access to other reso...
متن کاملData Privacy against Composition Attack
Data anonymization has become a major technique in privacy preserving data publishing. Many methods have been proposed to anonymize one dataset and a series of datasets of a data holder. However, no method has been proposed for the anonymization scenario of multiple independent data publishing. A data holder publishes a dataset, which contains overlapping population with other datasets publishe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Intelligent Transportation Systems
سال: 2022
ISSN: ['1558-0016', '1524-9050']
DOI: https://doi.org/10.1109/tits.2020.3021911